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Computation of Cavity Resonances Using

Edge-Based Finite Elements

A. Chatterjee, J. M. Jin, and J. L. Volakis

Abstract—In this paper, the eigenvalnes of a cavity resonator are
computed using edge-based finite elements, and it is shown that these
elements offer significant improvements in accuracy, in addition to
being suitable for modelling arbitrarily shaped inhomogeneous re-
gions. A performance comparison between the edge-based tetrahedral

and rectangular brick elements is also carried out.

I. INTRODucTION

Solving Maxwell’s equations for the resonances of a closed cav-

ity is important in understanding and controlling the operation of

many devices, including particle accelerators, microwave filters,

microwave ovens and optical fibers. However, the exact eigenval-

ues can be obtained only for simple geometries. For arbitrarily

shaped cavities, numerical techniques like the finite element method

must be used, but the occurrence of “spurious” modes [1] in the

node-based finite element approach has plagued the computation of

their eigenvalues. This difficulty can be circumvented with the in-

troduction of a penalty term [2] to render the finite element vector

field solutions nondivergent. However, it is difficult to satisfy con-

tinuity requirements across material interfaces and treat geometries

with sharp edges [3] using classical finite-elements, obtained by

interpolating the nodal values of the vector field components. Edge

elements, a type of vector finite elements with their degrees of free-

dom associated with the edges of the mesh, have been shown to be

free of these shortcomings [4]-[6]. Edge-based finite elements are,

therefore, a natural choice for treating three dimensional geome-

tries. Generally these lead to more unknowns but the higher vari-

able count is balanced by the greater sparsity of the finite element

matrix so that the computation time required to solve such a system

iteratively with a given accuracy is less than the traditional ap-

proach [7].

In this paper, we have solved for the eigenvalues of an arbitrarily

shaped metallic cavity using node-based and edge-based vector fi-

nite elements. The computed data are then compared with analyt-

ical results for empty and partially filled cavities. A comparison

between the storage intensity and computational accuracy for edge-

based rectangular bricks and tetrahedral is also presented. Finally,

we compute the eigenvalues of a metallic cavity with a ridge along

one of its faces.

II. FORMULATION

2.1 Finite Element Equations

Consider a three dimensional inhomogeneous body occupying the

volume V. To discretize the electric field ~ within this volume, we

subdivide the volume into small tetrahedral or rectangular bricks.

each occupying the volume V, (e = 1, 2, 0 . . , M), where M is

the total number of elements. For a numerical solution of E, we

expand it within the e th volume element as

(1)
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where W; are the edge-based vector basis functions, E; denote the

expansion coefficients of the basis, m represents the number of

edges comprising the element and the superscript stands for the

element number. On substituting this into the usual vector wave

equation and upon applying Galerkin’s technique, some vector

identities and the divergence theorem, we obtain the weak form of

Maxwell’s equation:

m,. r. .

$– jkOZo s W:”(fixmds
, (2)

where R ~ represents the weighted residual integral for element e,

SCdenotes the surface enclosing V,, A is the outward unit vector

normal to S., Z. is the free-space intrinsic impedance and e,, p, is

the material permittivity and permeability, respectively. Equation

(2) can be conveniently written in matrix form as

{i?:} = [Ae]{Ee} - J$[B’] {E’} - {C’} (3)

where

/$ = s‘(Vx W:). (Vx W;)dv (4)
v<#r

(5)

C: = j~Zo
+

W.(Gx H)ds (6)
s<

and on assembling the equations from all the elements making up

the geometty, we obtain the system

M M M M

= {o} (7)

where all matrices and vectors following the summation sign have

been augmented using global numbers.

Due to the continuity of tangential H at the interface between

two dielectrics, an element face lying inside the body does not con-

tribute to the last term of (7) in the final assembly of the element

equations. As a result, the last term of (7) reduces to a column

vector containing the surface integral of the tangential magnetic

field only over the outer surface of the body. In this application,

the surface enclosing the volume of the body V is perfectly con-

ducting and, thus, the coefficients associated with the edges bor-

dering the perfectly conducting surface can be set to zero a priori.

This reduces the original unknown count and eliminates the need

to generate equations for those edgeslunknowns which would have

otherwise involved the column vector { C‘}. Also since { C‘} is

only associated with bounda~ edges, the surface integral associ-

ated with it vanishes and (7) can be written as

[A] {E} = h [B] {E} (8)

where [A] and [B] are ~ x N symmetric, sparse matrices with N

being the total number of edges resulting from the subdivision of

the body excluding the edges on the boundary, {E} is a N x 1

column vector denoting the edge fields and X = ~ gives the eigen-

values of the system. A solution of (8) will yield the resonant field

distribution {E} and the corresponding wavenumber ko.
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TABLE I

TETRAHEDRON EDGE DEFINITION

Edge No. il i~

1 1 2

2 1 3

3 1 4

4 2 3

5 4 2

6 3 4

2.2 Basis Functions

The vector edge-based expansion functions for rectangular bricks

were presented in [8]. Vector tields within tetrahedral domains can

be conveniently represented by expansion functions that are linear

in the spatial variables and have either zero divergence or zero curl.

The basis functions defined in [7] are associated with the six edges

of thetetrahedron andhave zero divergence and constant curl. To

define them, letusassumethatil andi2are theterminal nodes of

the ith edge and the six edges of a tetrahedron are numbered ac-

cording to Table I. The vector basis function associated with the

(7 –ijthedge of thetetrahedron isthen given by

[

.f~-, + g,-j X r,
W$-t =

r in the tetrahedron

o, otherwise

with

b7-i
f7-i = ~rll x h

e

b, b7_, e,
g7-i – ~v

e

(9)

(lo)

(11)

inwhichi=l,2, .”’ , 6, V, is the volume of the tetrahedral

element, e, = (ri2 – ri,)/b, istheunit vector of theithedgeandb,

= Ir,, -r,,lis thelength of theithedge with r,, andr{, denoting

the location of the i, and iz nodes.

In general, the implementation of the above discretization will

involve two numbering systems, and thus some unique global edge

direction must be defined to ensure the continuity of ii x E across

all edges [9]. Here we choose this direction to be coincident with

the edge vector pointing from the smaller to the larger global node

number. Finally, since V . Wf = O, the electric field obtained from

a solution of (3) satisfies the divergence equation within each ele-

ment and, thus, the solution will be free from contamination due

to spurious solutions.

111. RESULTS

In Table II, we present a comparison of the percentage error in

the computation of eigenvalues for a 1 cm x .5 cm x .75 cm

rectangular cavity using edge-based rectangular bricks and tetra-

hedral. The edge-based approach using tetrahedral elements pre-

dicts the first six distinct non-trivial eigenvalues with less than 4

percent error and is seen to provide better accuracy than rectangular

brick elements. The maximum edge length for the rectangular brick

elements was .15 cm whereas that for the tetrahedral elements was

.2 cm. To investigate this matter further, we consider a cubical

metallic cavity having a side length of .5 cm. A plot of the per-

centage error in calculating the first three degenerate resonant fre-

quencies versus the number of unknowns is given in Fig. 1 for both

rectangular bricks and tetrahedral elements. It is clear in this ex-

ample that the tetrahedral elements predict the eigenvalues with

greater accuracy than the rectangular bricks.

TABLE II

EJGENVALUES (kO, cm-’) FORAN EMPTY 1 cm x 0.5 cm x 0.75 cm
RECTANGULAR CAVITY

Computed Computed

(bricks) (tetra.)

270 260 Error (%) Error (%)

Mode Analytical Unknowns Unknowns (bricks) (tetra.)

TEIOI

TM I ,0

TEOf ,

TEZO,
TMIII
TE,,,
TM210

-moz

5.236 5.307

7.025 7.182

7.531 7.725

7.767
8.179 8.350

8.350
8.886 9.151
8.947 9.428

5.213

6.977

7.474
7.573
7.991
8.122
8.572
8.795

–1.36

–2.23

–2.58

–3.13
–2.09
–2.09
–2.98
–5.38

,44

.70

1.00
-.56
2.29

.70
3.53
1.70

1.25
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Fig. 1. Plot of percentage error against number of unknowns for a cubical

metallic cavity having an edge length of 0.5 cm.

TABLE 111

EIGENVALUES (kO, cm-’) FORA HALF-FILLED 1 cm x 0.1 cm x 1 cm
RECTANGULAR CAVITY HAVING A DIELECTRIC FILLING OF c, = 2

EXTENDING FROM z = 0.5 cm to z = 1.0 cm

Computed
192

Mode Analytical Unknowns Error (%)

TEz,O, 3.538 3.534 .11

TEz201 5.445 5.440 .10
TEz,02 5.935 5.916 .32

TEz30 , 7.503 7.501 .04

TEZ*IJ* 7.633 7.560 .97

TEz,OS 8.096 8.056 .50

In Tables III and IV, we compare the exact eigenvalues with

those computed using edge-based tetrahedral finite elements. The

finite element mesh was generated using SDRC I-DEAS, a com-

mercial pre-processing package, and it is seen that the numerical

results are in good agreement with the exact values for both ho-

mogeneous and inhomogeneous cavities. The exact eigenvalues of

the half-filled cavity as described in Table 111 are computeal by

solving the transcendental equation obtained upon matching the

tangential electric and magnetic fields at the air-dielectric interface.

As seen, these results agree with those predicted by the finite ele-
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TABLE IV

EIGENVALUES (/tO, cm-’) FOR AN EMPTY SPHERICAL CAVITY OF RADIUS
1 cm

Computed
300

Mode Analytical Unknowns Error (%)

TMOIO 2.744 2.799 –’2.04

TM 111.. ”,” 2.802 –2.11
TM Ill, odd 2.811 –2.44

TMO,l 3.870 3.948 –2.02
TM12r, even 3.986 –2.99

TM}zl..~d 3.994 –3.20

TM22 ,, .,=. 4.038 –4.34

TM,,, odd 4.048 –4.59

TEO1, 4.493 4.433 1.33

TEIII, even 4.472 .47

TE Iii, odd 4.549 –1.25

TABLE V
TEN LOWEST NON-TRIVIAL EIGENVALUES (lcO, cm-1, FORTHE GEOMETRY

DRAWN IN FIG 2: (a) 267 UNKNOWNS; (b) 671 UNKNOWNS

No. (a) (b)

1 4.941 4.999

2 7.284 7.354

3 7.691 7.832
4 7.855 7.942

5 8.016 7.959
6 8.593 8.650

7 8.906 8.916
8 9.163 9.103
9 9.679 9.757

10 9.837 9.927

0 75cm

r

,
, “ ,’

,’ , ,’ ,’
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Fig. 2. Geometty for Table V.

ment solution to within 1 percent (no symmetry was assumed in

this solution). Similar comparisons are given in Table IV for a

sphere having 1 cm radius. Finally, Table V presents the eigenval-

ues of the geometry illustrated in Fig. 2. This is a closed metallic

cavity with a ridge along one of its faces.

It is noted that as the degeneracy of the eigenvalues increases,

the matrix becomes increasingly ill-conditioned and the numerical

solution is correspondingly less accurate [10]. This is clearly ob-

served from the data in Table IV for the case of a perfectly con-

ducting hollow spherical cavity. Since the second lowest TM mode

has five-fold degeneracy, the computational error is seen to be the

greatest. However, for the partially filled rectangular cavity, the

absence of degenerate modes gives results which are accurate to

within 1 percent of the exact eigensolutions. We finally remark of

the inherent presence of zero eigenvalues in our computations

whose number is equal to the internal nodes. These zero eigenval-

ues are easily identifiable and since they do not correspond to phys-

ical modes, they were always discarded.

IV. CONCLUSIONS

It was shown that the resonant frequencies of an arbitrarily shaped

inhomogeneously filled metallic resonator can be computed very

accurately via the finite element method using edge-based tetra-

hedral elements. The same method in conjunction with node-based

elements is much less reliable and not readily applicable to regions

containing discontinuous boundaries in shape and material. Edge-

based rectangular bricks do not provide as good an accuracy as

edge-based tetrahedral elements and their use is further limited to

a special class of geometries.
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Dielectric Property Measurements of Materials Using
the Cavity Technique

Ahmet Baysar and James L. Kuester

Abstract—A cavity technique based on frequency shift was nsed to
measure dielectric properties (dielectric constant and loss factor) of

some particulate materials as a function of temperature. The materials
studied were alumina, cobalt/alnmina, dolomite and sand. The prop-
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