2106

Computation of Cavity Resonances Using
Edge-Based Finite Elements

A. Chatterjee, J. M. Jin, and J. L. Volakis

Abstract—In this paper, the eigenvalues of a cavity resonator are
computed using edge-based finite elements, and it is shown that these
elements offer significant improvements in accuracy, in addition to
being suitable for modelling arbitrarily shaped inhomogeneous re-
gions. A performance comparison between the edge-based tetrahedra
and rectangular brick elements is also carried out.

[. INTRODUCTION

Solving Maxwell’s equations for the resonances of a closed cav-
ity is important in understanding and controlling the operation of
many devices, including particle accelerators, microwave filters,
microwave ovens and optical fibers. However, the exact eigenval-
ues can be obtained only for simple geometries. For arbitrarily
shaped cavities, numerical techniques like the finite element method
must be used, but the occurrence of ‘‘spurious’” modes [1] in the
node-based finite element approach has plagued the computation of
their eigenvalues. This difficulty can be circumvented with the in-
troduction of a penalty term [2] to render the finite element vector
field solutions nondivergent. However, it is difficult to satisfy con-
tinuity requirements across material interfaces and treat geometries
with sharp edges [3] using classical finite-elements, obtained by
interpolating the nodal values of the vector field components. Edge
elements, a type of vector finite elements with their degrees of free-
dom associated with the edges of the mesh, have been shown to be
free of these shortcomings [4]-[6]. Edge-based finite elements are,
therefore, a natural choice for treating three dimensional geome-
tries. Generally these lead to more unknowns but the higher vari-
able count is balanced by the greater sparsity of the finite element
matrix so that the computation time required to solve such a system
iteratively with a given accuracy is less than the traditional ap-
proach [7].

In this paper, we have solved for the eigenvalues of an arbitrarily
shaped metallic cavity using node-based and edge-based vector fi-
nite elements. The computed data are then compared with analyt-
ical results for empty and partially filled cavities. A comparison
between the storage intensity and computational accuracy for edge-
based rectangular bricks and tetrahedra is also presented. Finally,
we compute the eigenvalues of a metallic cavity with a ridge along
one of its faces.

II. FORMULATION
2.1 Finite Element Equations

Consider a three dimensional inhomogeneous body occupying the
volume V. To discretize the electric field E within this volume, we
subdivide the volume into small tetrahedra or rectangular bricks,
each occupying the volume V, (e = 1, 2, + -+, M), where M is
the total number of elements. For a numerical solution of E, we
expand it within the eth volume element as

E = 1=21 E¢ Wt M
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where W7 are the edge-based vector basis functions, E; denote the
expansion coefficients of the basis, m represents the number of
edges comprising the element and the superscript stands for the
element number. On substituting this into the usual vector wave
equation and upon applying Galerkin’s technique, some vector
identities and the divergence theorem, we obtain the weak form of
Maxwell’s equation:

Rf=ZEjS

7=1

1
{— (VX W) - (VX W) — kie, W - W;] dv
By

.

— jkoZy é‘) Wi+ (A x H)ds

S, 2)
where R represents the weighted residual integral for element e,
S, denotes the surface enclosing V,, # is the outward unit vector
normal to S,, Z, is the free-space intrinsic impedance and ¢,, p, is
the material permittivity and permeability, respectively. Equation
(2) can be conveniently written in matrix form as

{R}} = [AT{E} — K[BI{E} — {C} (3
where
A;=S i(V><Wf)~(V><Wf)dv “4)
Ve fhr
B; = SV e W, W dv ®))
Cl = jkoZy <§>S Wi - (A X H)ds (6)

and on assembling the equations from all the elements making up
the geometry, we obtain the system

il

M M M M
%R} = X MAEY - kg 2 [BUEY — % {C

e=1

= {0} @

where all matrices and vectors following the summation sign have
been augmented using global numbers.

Due to the continuity of tangential H at the interface between
two dielectrics, an element face lying inside the body does not con-
tribute to the last term of (7) in the final assembly of the element
equations. As a result, the last term of (7) reduces to a column
vector containing the surface integral of the tangential magnetic
field only over the outer surface of the body. In this application,
the surface enclosing the volume of the body V is perfectly con-
ducting and, thus, the coeflicients associated with the edges bor-
dering the perfectly conducting surface can be set to zero a priori.
This reduces the original unknown count and eliminates the need
to generate equations for those edges/unknowns which would have
otherwise involved the column vector {C¢}. Also since {C°} is
only associated with boundary edges, the surface integral associ-
ated with it vanishes and (7) can be written as

[41{E} = N[BI{E} ®)

where [4] and [B] are N X N symmetric, sparse matrices with N
being the total number of edges resulting from the subdivision of
the body excluding the edges on the boundary, {E} isa N X 1
column vector denoting the edge fields and A = k3 gives the eigen-
values of the system. A solution of (8) will yield the resonant field
distribution {E} and the corresponding wavenumber k.
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TABLE I
TETRAHEDRON EDGE DEFINITION
Edge No. i i
1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4

2.2 Basis Functions

The vector edge-based expansion functions for rectangular bricks
were presented in [8]. Vector fields within tetrahedral domains can
be conveniently represented by expansion functions that are linear
in the spatial variables and have either zero divergence or zero curl.
The basis functions defined in [7] are associated with the six edges
of the tetrahedron and have zero divergence and constant curl. To
define them, let us assume that i; and i, are the terminal nodes of
the ith edge and the six edges of a tetrahedron are numbered ac-
cording to Table I. The vector basis function associated with the
(7 — i)th edge of the tetrahedron is then given by

f7-, + g7-i X r, rin the tetrahedron
w5, =[ B ©

0, otherwise
with
b7-—1
f7—1 = 6Ve r, X L (10)
blb7-‘lel
- = 11
87— 6Ve ( )
in whichi = 1,2, - -+, 6, V, is the volume of the tetrahedral

element, e, = (r, — r;,)/b, is the unit vector of the ith edge and b,
= |r, — r,| is the length of the ith edge with r, and r,, denoting
the location of the i, and i, nodes.

In general, the implementation of the above discretization will
involve two numbering systems, and thus some unique global edge
direction must be defined to ensure the continuity of # X E across
all edges [9]. Here we choose this direction to be coincident with
the edge vector pointing from the smaller to the larger global node
number. Finally, since V - W¢ = 0, the electric field obtained from
a solution of (3) satisfies the divergence equation within each ele-
ment and, thus, the solution will be free from contamination due
to spurious solutions.

III. ResuLTS

In Table II, we present a comparison of the percentage error in
the computation of eigenvalues fora 1 cm X .5 cm X .75 cm
rectangular cavity using edge-based rectangular bricks and tetra-
hedra. The edge-based approach using tetrahedral elements pre-
dicts the first six distinct non-trivial eigenvalues with less than 4
percent error and is seen to provide better accuracy than rectangular
brick elements. The maximum edge length for the rectangular brick
elements was .15 cm whereas that for the tetrahedral elements was
.2 cm. To investigate this matter further, we consider a cubical
metallic cavity having a side length of .5 cm. A plot of the per-
centage error in calculating the first three degenerate resonant fre-
quencies versus the number of unknowns is given in Fig. 1 for both
rectangular bricks and tetrahedral elements. It is clear in this ex-
ample that the tetrahedral elements predict the eigenvalues with
greater accuracy than the rectangular bricks.
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TABLE 11
EIGENVALUES (kg, cm™') FOR AN EMPTY 1 ¢cm X 0.5 cm X 0.75 ¢m
RECTANGULAR CAVITY

Computed  Computed
(bricks) (tetra.)
270 260 Error (%)  Error (%)
Mode  Analytical Unknowns Unknowns (bricks) (tetra.)
TE o 5.236 5.307 5.213 ~1.36 .44
™, 7.025 7.182 6.977 -2.23 .70
TEqy, 7.531 7.725 7.474 —2.58 1.00
TEao, 7.767 7.573 -3.13 -.56
™, 8.179 8.350 7.991 -2.09 2.29
TE 8.350 8.122 -2.09 .70
TMa 10 8.886 9.151 8.572 —-2.98 3.53
TE 02 8.947 9.428 8.795 -5.38 1.70
1.50
1.25 - —o-- Tetrahedron
1.00 -
<
T I
5 0.75
&
0.50 -
025+
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Fig. 1. Plot of percentage error against number of unknowns for a cubical
metallic cavity having an edge length of 0.5 cm.

TABLE III
EIGENVALUES (kg, cm™') FOR A HALF-FILLED 1 cm X 0.1 cm X 1 c¢m
RECTANGULAR CAVITY HAVING A DIELECTRIC FILLING OF ¢, = 2
EXTENDINGFROM z = 0.5 cmto z = 1.0 cm

Computed
192
Mode Analytical Unknowns Error (%)
TEz;o1 3.538 3.534 .11
TEza0, 5.445 5.440 .10
TEz,02 5.935 5.916 .32
TEz30, 7.503 7.501 .04
TEzZa0 7.633 7.560 .97
TEz103 8.096 8.056 .50

In Tables HI and IV, we compare the exact eigenvalues with
those computed using edge-based tetrahedral finite elements. The
finite element mesh was generated using SDRC I-DEAS, a com-
mercial pre-processing package, and it is seen that the numerical
results are in good agreement with the exact values for both ho-
mogeneous and inhomogeneous cavities. The exact eigenvalues of
the half-filled cavity as described in Table III are computed by
solving the transcendental equation obtained upon matching the
tangential electric and magnetic fields at the air-dielectric interface.
As seen, these results agree with those predicted by the finite ele-
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TABLE IV
EIGENVALUES (k,, cm™') FOR AN EMPTY SPHERICAL CAVITY OF RADIUS
1 cm
Computed
300
Mode Analytical Unknowns Error (%)
TMoio 2.744 2.799 —2.04
TMHl‘even 2.802 —211
TMi11, 0da 2.811 —2.44
TMgs, 3.870 3.948 —-2.02
TMIZI even 3-986 —299
TM 21 oua 3.994 -3.20
TM22), even 4.038 —4.34
TMz21. 0aa 4.048 —4.59
TEon 4.493 4.433 1.33
TEI il,even 4472 47
TE, 11,044 4.549 —1.25
TABLE V

TEN LowEesT NON-TRIVIAL EIGENVALUES (ky, cm™') FOR THE GEOMETRY
DRAWN IN FiG 2: (a) 267 UNKNOWNS; (b) 671 UNKNOWNS

No. (@) ()
1 4.941 4.999
2 7.284 7.354
3 7.691 7.832
4 7.855 7.942
5 8.016 7.959
6 8.593 8.650
7 8.906 8.916
8 9.163 9.103
9 9.679 9.757
10 9.837 9.927
'
'
|
075¢cm :
:
' . i |
1 ’y 71
b o - - o - 4 e - = - -
’ YAR 4 , 7
’ ¢’ s
T o " 1.0cm 7 /, /' ]
’ . ¢ 7
’, ¢ ¢ s s
’ ¢ ! + 7
0.5¢cm S/ ,'.Il S
4 0.2em Lo,
I' S 'I
l S0 lcmLV—[,’
«—0 dcm—> «—0 4cm —>

Fig. 2. Geometry for Table V.

ment solution to within 1 percent (no symmetry was assumed in
this solution). Similar comparisons are given in Table IV for a
sphere having 1cm radius. Finally, Table V presents the eigenval-
ues of the geometry illustrated in Fig. 2. This is a closed metallic
cavity with a ridge along one of its faces.

It is noted that as the degeneracy of the eigenvalues increases,
the matrix becomes increasingly ill-conditioned and the numerical
solution is correspondingly less accurate [10]. This is clearly ob-
served from the data in Table IV for the case of a perfectly con-
ducting hollow spherical cavity. Since the second lowest TM mode
has five-fold degeneracy, the computational error is seen to be the
greatest. However, for the partially filled rectangular cavity, the

absence of degenerate modes gives results which are accurate to
within 1 percent of the exact eigensolutions. We finally remark of
the inherent presence of zero eigenvalues in our computations
whose number is equal to the internal nodes. These zero eigenval-
ues are easily identifiable and since they do not correspond to phys-
ical modes, they were always discarded.

IV. CoNCLUSIONS

It was shown that the resonant frequencies of an arbitrarily shaped
inhomogeneously filled metallic resonator can be computed very
accurately via the finite element method using edge-based tetra-
hedral elements. The same method in conjunction with node-based
elements is much less reliable and not readily applicable to regions
containing discontinuous boundaries in shape and material. Edge-
based rectangular bricks do not provide as good an accuracy as
edge-based tetrahedral elements and their use is further limited to
a special class of geometries.
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Dielectric Property Measurements of Materials Using
the Cavity Technique

Ahmet Baysar and James L. Kuester

Abstract—A cavity technique based on frequency shift was used to
measure dielectric properties (dielectric constant and loss factor) of
some particulate materials as a function of temperature. The materials
studied were alumina, cobalt/alumina, dolomite and sand. The prop-
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